Efficient Simulation of Financial Stress Testing Scenarios with Suppes-Bayes Causal Networks
نویسندگان
چکیده
The most recent financial upheavals have cast doubt on the adequacy of some of the conventional quantitative risk management strategies, such as VaR (Value at Risk), in many common situations. Consequently, there has been an increasing need for verisimilar financial stress testings, namely simulating and analyzing financial portfolios in extreme, albeit rare scenarios. Unlike conventional risk management which exploits statistical correlations among financial instruments, here we focus our analysis on the notion of probabilistic causation, which is embodied by Suppes-Bayes Causal Networks (SBCNs), SBCNs are probabilistic graphical models that have many attractive features in terms of more accurate causal analysis for generating financial stress scenarios. In this paper, we present a novel approach for conducting stress testing of financial portfolios based on SBCNs in combination with classical machine learning classification tools. The resulting method is shown to be capable of correctly discovering the causal relationships among financial factors that affect the portfolios and thus, simulating stress testing scenarios with a higher accuracy and lower computational complexity than conventional Monte Carlo Simulations.
منابع مشابه
Learning the Probabilistic Structure of Cumulative Phenomena with Suppes-Bayes Causal Networks
One of the critical issues when adopting Bayesian networks (BNs) to model dependencies among random variables is to “learn” their structure, given the huge search space of possible solutions, i.e., all the possible direct acyclic graphs. This is a wellknown NP -hard problem, which is also complicated by known pitfalls such as the issue of I-equivalence among different structures. In this work w...
متن کاملModeling cumulative biological phenomena with Suppes-Bayes causal networks
Several diseases related to cell proliferation are characterized by the accumulation of somatic DNA changes, with respect to wildtype conditions. Cancer and HIV are two common examples of such diseases, where the mutational load in the cancerous/viral population increases over time. In these cases, selective pressures are often observed along with competition, cooperation and parasitism among d...
متن کاملBayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution
This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...
متن کاملProject Time and Cost Forecasting using Monte Carlo simulation and Artificial Neural Networks
The aim of this study is to present a new method to predict project time and cost under uncertainty. Assuming that what happens in projects implementation which is expressed in the form of Earned Value Management (EVM) indicators is primarily related to the nature of randomness or unreliability, in this study, by using Monte Carlo simulation, and assuming a specific distribution for the time an...
متن کاملA general Bayes exponential inference model for accelerated life testing
9 This article develops a general Bayes inference model for accelerated life testing assuming failure times at each stress level are exponentially distributed. Using the approach, Bayes 11 point estimates as well as probability statements for use-stress life parameters may be inferred from the following testing scenarios: regular life testing, 7xed-stress testing, step-stress testing, 13 pro7le...
متن کامل